Pilot phase of the Adriatic meteotsunami research and warning network

Jadranka Šepić, Damir Ivanković

Institute of Oceanography and Fisheries, Split, Croatia

Outline

- Motivation for developing a meteotsunami research and warning network
- The Adriatic meteotsunami research and warning network
- Network application to a real situation

Motivation...

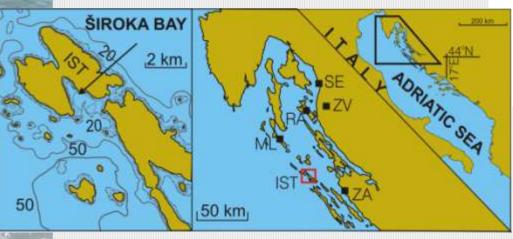
Strong meteotsunamis occur at the Adriatic once every few years

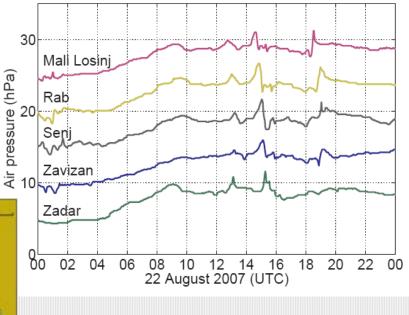
Develop a meteotsunami research network

- Better understanding of a meteotsunami generation and propagation mechanism
- □ How much in advance can we predict a meteotsunami?

Develop a meteotsunami warning network

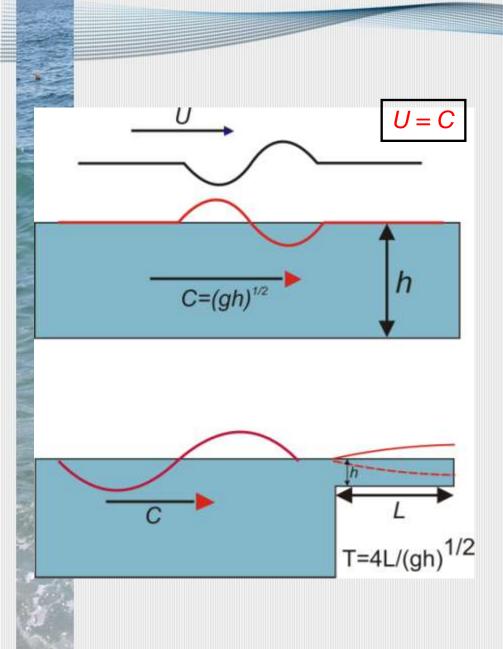
- Issue warning in time to:
 - Get off the beach
 - Re-park cars
 - Move boats out of the harbours

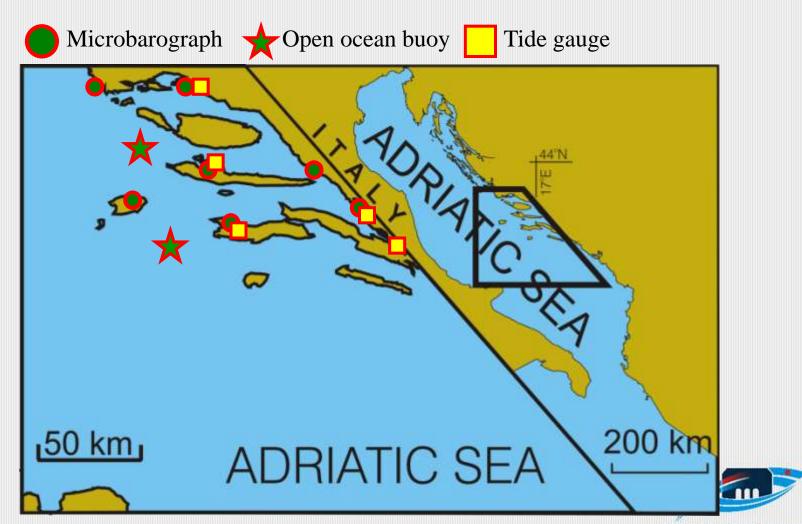



Generation mechanism...

Remarkable air pressure disturbance ~ 4 mbar/15 min.

Široka Bay meteotsunami, 22 August 2007, ~ 4 m high waves




Generation mechanism

- Air pressure disturbance generates and enhances barotropic ocean waves via Proudman resonance
- Open sea waves generate seiches in harbors and bays via harbor resonance (open sea waves should have high energies at seiche periods!)

Research network...

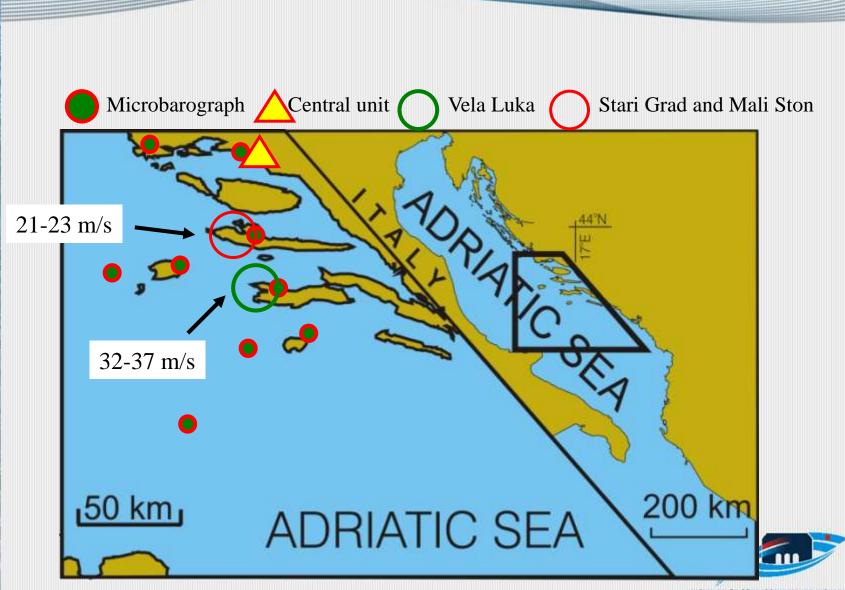
INSTITUTE OF OCEANOGRAPHY AND FISHERIES SPLIT

Warning network...

Possibilities for warning systems:

- Monitoring synoptic conditions (Šepić and Vilibić, 2012)
 - □ An indication that an event might happen, but no indication on strength of the event.
- Mesoscale atmospheric modeling (Belušić et al., 2007)
 - Very difficult to reliably model air pressure disturbances in real-time.

Tracking convective clouds (Belušić and Strelec Mahović, 2009)


- Sucesfull for some events, but not all meteotsunamis are related to convective clouds, and not all convective clouds are related to meteotsunamis -> might not allow enough time for reaction.
- Tracking air pressure disturbances (Šepić and Vilibić, 2011)
 - Cheap and reliable solution -> might not allow enough time for reaction

Sea level measurements (Marcos et al., 2009)

Sea level oscillations often strong enough to be considered a tsunami only at one location, hard to precisely determine their onset time.

Warning network...

INSTITUTE OF OCEANOGRAPHY AND FISHERIES SPLIT

Warning network... Vela Luka meteotsunami decision matrix (based on theory and modeling by Orlić et al., 2010)

Rate of air pressure change (hPa/5 min)	Velocity (m/s)	Direction ()	Meteotsunami danger
> 2.0	[32-37]	[200-250]	Large
2.0	[32-37]	[180-200] or [250-270]	Moderate
2.0	[23-32] or [37- 40]	[200-250]	Moderate
[1.0 - 2.0]	[32-37]	[200-250]	Moderate
> 2.0	[23-32] or [37- 40]	[180-200] or [250-270]	Low
[1.0 – 2.0]	[32-37]	[180-200] or [250-270]	Low
[1.0 – 2.0]	[23-32] or [37- 40]	[200-250]	Low
[1.0 - 2.0]	[23-32] or [37- 40]	[180-230] or [250-270]	

Warning network... Stari Grad meteotsunami decision matrix (based on theory and modeling by Vilibić et al., 2004)

Rate of air pressure change (hPa/5 min)	Velocity (m/s)	Direction ()	Meteotsunami danger		
> 2.0	[21-23]	[270-290]	Large		
2.0	[21-23]	[235-270] or [290-325]	Moderate		
2.0	[17-21] or [23- 27]	[270-290]	Moderate		
[1.0 - 2.0]	[21-23]	[270-290]	Moderate		
> 2.0	[17-21] or [23- 27]	[235-270] or [290-325]	Low		
[1.0 – 2.0]	[21-23]	[235-270] or [290-325]	Low		
[1.0 – 2.0]	[17-21] or [23- 27]	[270-290]	Low		
[1.0 - 2.0]	[17-21] or [23- 27]	[235-270] or [290-325]			

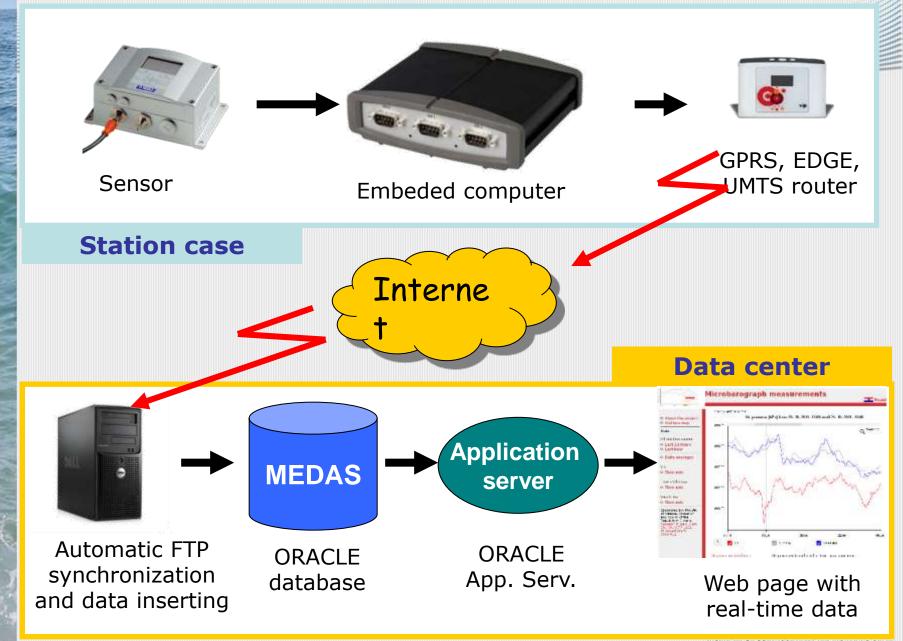
Existing network locations

Triangular shape Areas with high meteotsunami risk

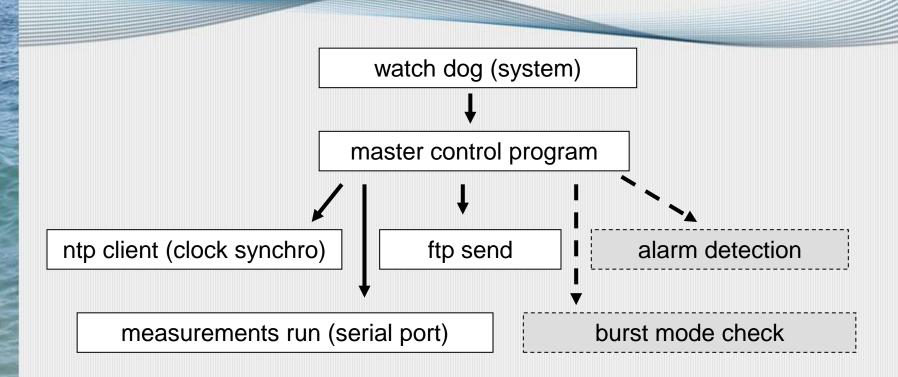
Measurement stations

 Vaisalaa air pressure sensor (accuracy of 0.01 hPa)
 Sampling every 1 second
 Embeded linux computer (Axis)
 Specialy developed software
 Multi process architecture
 Watch dog process

Real-time system specifications

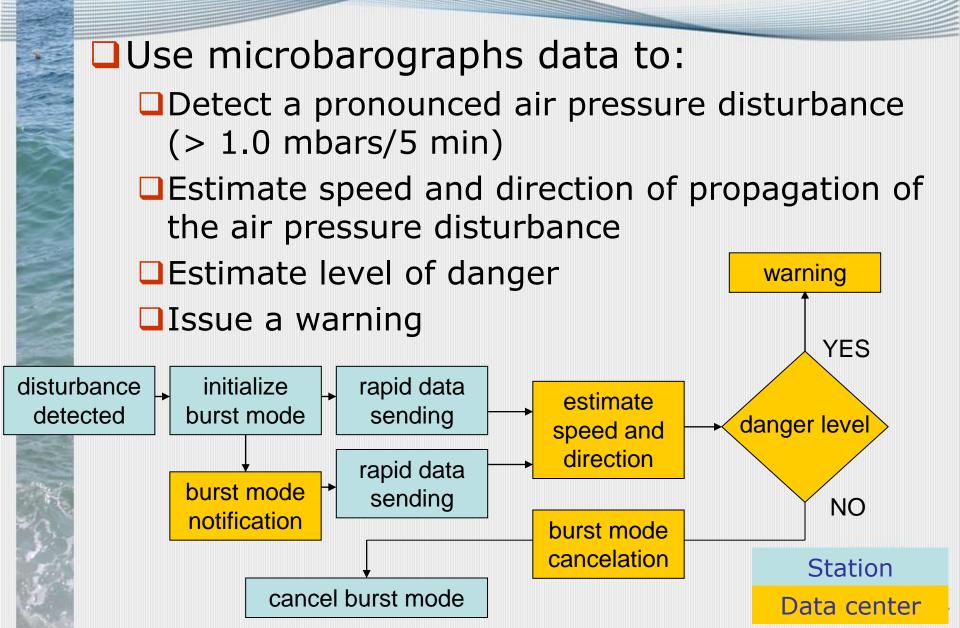

Full automatic data processing

- FTP synchronisation (data transfer)
- Database inserting
- Database processing
- Automatic recovery from communication gaps
- Database storage
- Database driven dynamic web pages
- Flash graph (plan to switch to javascript graphs)



Real time data transfer, processing and visualisation

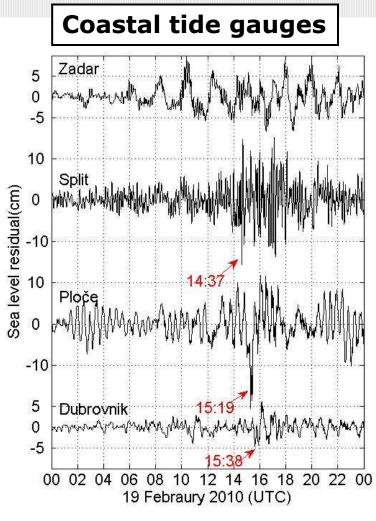
Programs shema



4 active processes

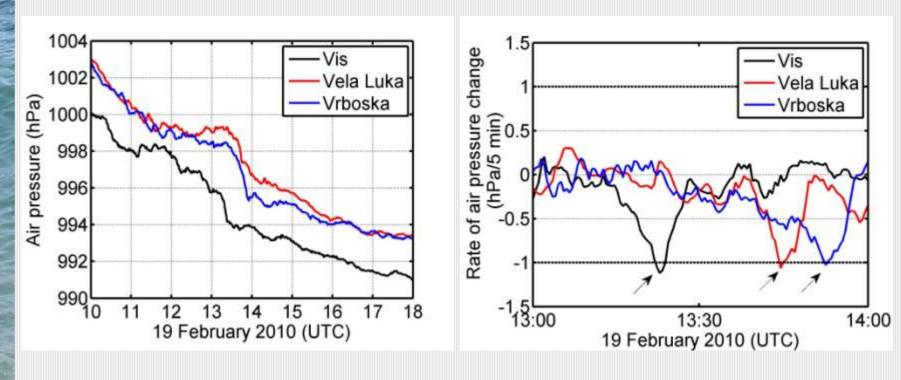
restart in case of nonresponding state

Warning network...



Using the network: Stari Grad meteotsunami 19 February 2009

Weak meteotsunami reported at Stari Grad:
maximum wave height 60 cm
strong currents pulled one car and several large garbage containers into the sea



INSTITUTE OF OCEANOGRAPHY AND FISHERIES SPLIT

Using the network: Stari Grad meteotsunami 19 February 2009

Threshold pressure tendency: 1.0 hPa/5 min

Using the network: Stari Grad meteotsunami 19 February 2009

Warning algorithm – MATLAB code developed to analyze data and estimate danger

MATLAB 7.10.0 (R2010a)

🗋 🛃 🍡 💆 🕫 🕐 📚 🚽 😰 🤫 Current Folder), d (notisb., voril),setectsunani, detection?

Shortouts 🕐 How to Add 🕐 What's New

e Edit Debug Parallel Desittop Window Help

New to MATLAB? Watch this Video, see Demos. or read Getting Started.

>> procedure

fx >>

Critical tendency is 1.000000 hPa/tend_time Tend&ncy time is 5.000000 min Vela Luka

Disturbance 45: No meteotsunami danger! AP change: -1.034194, Speed: 22.000000, Direction: 236.000000

·

Rate of air pressure change: > 1hPa/5 min Estimated speed: 22 m/s Estimated direction: 236° (towards northeast)

Stari Grad i Mali Ston

	Disturbance	45:	Weak	meteotsunami	possible!	AP/5	min:	-1.034194,	Speed:	22.000000,	Direction:	236.000000
	Disturbance	46:	Weak	meteotsunami	possible!	AP/5	min:	-1.130645,	Speed:	22.000000,	Direction:	235.000000
	Disturbance	47:	Weak	meteotsunami	possible!	AP/5	min:	-1.093871,	Speed:	23.000000,	Direction:	236.000000
	Disturbance	48:	Weak	meteotsunami	possible!	AP/5	min:	-1.015484,	Speed:	23.000000,	Direction:	235.000000
-					here a							

Conclusions

Upsides:

Cheap and reliable warning system

Downsides

Might not allow enough time for warning:
 for possibly most destructive air pressure disturbances:
 Warning 10 - 20 before a metoetsunami bits Vola Luka

- Warning 10 20 before a meteotsunami hits Vela Luka.
- □ Warning 20 25 min before a meteotsunami hits Stari Grad.

Thank you for your attention! Questions?

Literature

- Belušić, D., and N. Strelec Mahović, 2009. Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic, Physics and Chemistry of the Earth, 34, 918-927.
- Belušić, D., Grisogono, B., and Z. Bencetić Klaić, 2007. Atmospheric origin of the devastating coupled air-sea event in the east Adriatic, Journal of Geophysical Research, 112, doi: 10.1029/2006JD008204.
- Marcos, M., Monserrat, S., Medina, R., Orfila, A., and M. Olabarrieta, 2009. External forcing of meteorological tsunamis at the coast of the Balearic Islands, Physich and Chemistry of the Earth, 34, 938-947.
- Orlić, M., Belušić, D., Janeković, I., and M. Pasarić, 2010. Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing, Journal of Geophysical Research, 115, C06011, doi: 10.1029/2009JC005777.
- Šepić, J., and Vilibić, I., 2011. The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea, Natural Hazards and Earth System Sciences, 11, 83-91.
- Šepić, J., and Vilibić, I., 2012. Northern Adriatic meteorological tsunamis: observations, link to the atmosphere and predictability, Journal of Geophysical Research, *submitted*.
- Šepić, J., Vilibić, I., and D. Belušić, 2009. Source of the 2007 Ist meteotsunami (Adriatic Sea), Journal of Geophysical Research, 114, doi: 10.1029/2008JC005092.

